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For most systems prohibitively high operating power 
levels are required to modify the gain characteristic by 
phonon saturation. In those exceptional systems where 
phonon Q's might be high enough to permit saturation 
at reasonable power levels, increases in phonon popula­
tions tend to transform the phonon-terminated maser 
into a ground-state maser. Depending upon whether the 
particular phonons are such that their vibrational 
structure borrows its intensity from distant electronic 
states or from the no-phonon line and provided the 
electronic populations are actually inverted, increases 
in phonon population can increase or decrease the 

amplitude of the gain characteristic at the operating 
frequency. Systems of both types will be very interest­
ing to study, if it should prove possible to locate 
materials with saturable phonons. 
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The number of particles in the ground state has been computed as a function of temperature for an ideal 
Bose-Einstein gas confined to a box of finite volume by evaluating the discrete sum over states on a com­
puter. Large deviations from London's bulk-gas result are found when the length of the box is much greater 
than its width for the range of dimensions investigated here. I t is shown that the deviations occur because 
in this limit the system tends to behave like a one-dimensional system. 

I. INTRODUCTION 

IT has been suggested1 that the superfluid properties 
of liquid He4 may be qualitatively understood by 

treating the fluid as a gas of noninteracting bosons. In 
the ideal-gas approximation the superfluid component 
is assumed to consist of the particles in the ground state, 
which is macroscopically occupied for temperatures 
below a critical temperature Tc. 

Measurements of the temperature of the lambda 
point T\ of liquid He4 confined to fine pores have been 
performed.2 A severe depression of T\ was observed 
when the fluid was confined to pores of 40-50 A diam­
eter. In one case T\ was depressed from the bulk value 
of 2.18-1.36°K in a sample consisting of pores of 
diameter 43 A. 

We have calculated the number of particles in the 
ground state as a function of temperature for an ideal 
Bose-Einstein gas confined to a container of width D and 
length L, where L ranges from 200-5000 A and D is in 
the range of 10-100 A in order to see if the ideal Bose-
Einstein gas model is able to offer a qualitative under­
standing of the above mentioned depression of 7\. 
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II. GENERAL DISCUSSION 

Consider a system of n noninteracting bosons of spin 
zero and mass m. We assume the particles are confined 
to a box of length L and square cross section, where D is 
the length of a side of the square. The allowed single-
particle energy levels are 
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where n\, n2 and ns range over the positive integers. The 
mean number of particles in the state (n^n^nz) is 

N n\ninz' 

where JJL is the chemical potential, k is Boltzmann's 
constant and T is the temperature in degrees Kelvin. 
The chemical potential tx is determined from 
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The number of particles in the ground state is 
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if N m » l . We write Nin=a(T)N. Then Eq. (1) 
becomes 
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For given values of J9, L, and TV the fraction of the 
total number of particles in the ground state at tem­
perature T may be found by solving Eq. (2) for a(T). 
If the average particle-number density is n, then 
N=nD2L. In the limit as D and L approach infinity 
with n held fixed we have the well-known result1 

a(T)=l-(T/Tc)v% T<TC 

0 , T>TC, (3) 
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If we employ the values ra=6.68XlO~24g and 
w—2.25X1022 particles/cm3 which are characteristic of 
liquid He4, we have Tc= 3.165 K°. 

We have solved Eq. (2) for a(T) by carrying out the 
discrete sum over states for the values of D and L 
mentioned above. An IBM-7090 computer was utilized 
to evaluate the sums. The values of m and n given above 
were used. The results of the computations are shown 
in Figs. 1-3. The curves labeled "bulk gas" are plots of 
Eq. (3). 

III. DISCUSSION OF RESULTS 

We first discuss the results for L= 1000 A as presented 
in Fig. 2. It may be seen that for D= 100 A the system 
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FIG. 1. Occupation of the ground state oas 
a function of temperature for Z = 200 A. 

1.0 

0.8H-

i 0.6 

,o 0.4\~ 

0.2h 

rc^V I I I 

\ \ ^ N S . FU1IK H A S 

| \ \ \^T—D = 100A 

- \ \ \^K—D = 75A. 

-1 VD = 50A\ \ A \ 

\ D = 30A~\ \ \ V \ 

\ - — D = 10A ^ \ ^ ^ v \ 

i ~ ~ ~ — T — - ^ r f t 

-

1.0 2.0 
Temperature, °K 

3.0 

FIG. 2. Occupation of the ground state as 
a function of temperature for L= 1000 A. 

behaves very much like the bulk gas. However, when 
D= 10 A very different results are obtained. We see that 
for the latter case the ground state initially is depopu­
lated very rapidly as the temperature is raised from 
absolute zero while at higher temperatures a slowly-
varying nonexponential tail remains. It will be shown 
below that these features are characteristic of a system 
with only one degree of freedom. 

Suppose that in the expression for Enin2nz we keep n% 
fixed and examine the spacing between the levels EnW3 

and E2mz. We find E2ins-Elln,= A=3>TrW/2fnD2. For 
D=10A, A/kT2*1.8/T, and for D= 100 A, A/kT 
^(i.8xio-2)/r. 

Thus, for D= 10 A we see that the levels for which m 
or n2 are > 1 are separated from the ground state by an 
energy roughly equal to kT for T in the range of 1 to 
2°K. Since there are a large number of levels of the type 
Eiinz which lie within kT of the ground state, we expect 
levels for which n\ or n2 are > 1 to have little influence 
on the properties of the system. Thus, we expect the 
system to behave like a one dimensional gas of bosons 
confined to a line of length L. It will be shown below 
that an initial rapid depopulation of the ground state 
and a nonexponential tail are properties of such a one 
dimensional gas. 

The allowed energy eigenvalues for a particle confined 
to a one dimensional line of length L are En=yn2, where 
y = TT2h2/2mL2 and n= 1,2,3,-- -. Then, as before, 
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Eq. (4) may be written in the form 
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FIG. 3. Occupation of the ground state as a 
function of temperature for Z=5000 A. 

where Ni is the number of particles in the ground state. 
In the very high temperature limit, 7Vi<3Cl and y<^kT. 
Then only the \ = 0 term need be retained on the right-
hand side of Eq. (5) and the summation on n may be 
replaced by integration. We find 

Ni/N=a(T)= {2y/irkT)1'2. 

If Z = 100 A and N= 103, the above approximations are 
valid for 7»50°K. Thus, at T-> oo,«(D« l / r ^ a n d 
we see that a(T) has a long nonexponential tail. 

In the low-temperature limit N{2>1 if N^>1. Then in 
Eq. (5) we have Ni/(Ni+1)2*1, and we find 

1 « r /y(n2-l)\ n-1 
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The temperature 70.9 at which a(T) = 0.9 may be 
found from 

£ expf ) - l -0.1N. (6) 

We obtain an upper bound on T0.9 by keeping only 
the first term on the left-hand side of Eq. (6). This 
yields 

O.lSiflPnB* 
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For Z>= 10 A and Z,= 100 A we find r0.9=0.03°K. The 
computer calculations of Fig. 2 yields r0.9=0.05oK for 
this case. For the bulk gas r0.9=O.7O°K. 

Thus, the rapid initial depopulation of the ground 
state and the long nonexponential tail are characteristic 
of the one-dimensional gas. 

The results for L= 5000 A are given in Fig. 3. We see 
that for a given value of D the curve for a(T) is de­
pressed considerably more than the corresponding curve 
for L= 1000 A. In particular the curve for £=5000 A 
and D= 100 A shows large deviations from the bulk-gas 
curve even though A/kT<^l for T in the range of 1 
to 2°K. 

Even if A/kT<Kl the system can be expected to 
behave like a one-dimensional system if the number of 
states of the type Ennd in a given energy range greatly 
exceeds the number of states of the type Enin2i in the 
same energy range. If we treat the eigenvalue spectrum 
as a continuum, the density of states of type Enn% is the 
same as the total density of states of a one-dimensional 
line of length L, while the density of states of type 
Enin2i is the same as that for a two-dimensional square 
of side D. Let pi{E) denote the total density of states of 
the one-dimensional line and let pi{E) denote the total 
density of states of the square. We have pi(E) = (L/2wh) 
(tn/2Ey<2 and p2(E) = mD2/2Trh2. We expect large 
deviations from bulk gas behavior when 
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From Fig. 3 it may be seen that significant deviations 
from bulk-gas behavior occurs when J ,= 0.20°K for 
Z>=100A. Inserting T=0.20°K and Z=5000A into 
our criteria" (7), we see that such differences are expected 
when Z><<C140 A. Eq. (7) predicts deviations from bulk 
behavior for ZK<60A if £=1000 A and 7,= 0.20°K. 
Hence, the deviations from bulk-gas behavior which 
occur when A/kT<s.l result from the numerical pre­
dominance of levels of the type Ennr 

In Figure 1 the results for Z=200A and various 
values of D from 30 to 300 A are shown. The curve for 
D= 30 A and L= 200 A lies above the curve for Z>= 30 A 
and Z=1000A, as expected from equation (7). The 
curve for D= 100 A and L= 200 A is found to lie above 
the bulk-gas curve by a considerable amount. The 
computations for Z>=200A and D=300A shown in 
Fig. 1 indicate that the results converge to the bulk-gas 
curve with increasing D. 
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